题 目:Portfolio Optimization
报告人:滑铁卢大学投资组合优化系Michael J. Best 教授
主持人:姚铮,体育外围平台APP会计与财务管理系教授
时 间:2012年6月8日(周五)15:30-17:00
地 点:紫金港校区体育外围平台APP902会议室
报告人介绍: Michael J. Best 现为滑铁卢大学数学系投资组合优化系教授,是国际著名的风险管理和投资组合优化专家。分别在1967年和1968年获得滑铁卢大学 (University of Waterloo)数学学士和硕士学位,于1970年和1971年获得加州大学伯克利分校(University of California Berkeley)理学硕士和博士学位。自1971年开始在滑铁卢大学组合优化系任教,研究方向为投资组合优化。先后出版了《线性规划》(Linear Programming)和《投资组合优化》(Portfolio Optimization)两本专著。发表论文50多篇,多数学术论文发表在《Management Science》、《Journal of Finance》、《The Review of Financial Studies》、《Mathematical Programming》等A+类刊物上。此外,长期担任美国和加拿大金融机构投资组合优化咨询工作。
摘 要: A money manager must decide on what proportion of wealth is to be invested in each of a (potentially large) number of assets. The decision is a risk/reward trade off which depends on his aversion to risk. H. Markowitz developed a theory to solve this problem and shared a Nobel Prize for it. This mean-variance portfolio optimization is the basis for much of modern asset allocation. For those not familiar with the subject, we will begin with a detailed derivation of the Efficient Frontier and Capital Market Line (CML) by posing each as a quadratic minimization problem. We briefly mention Sharpe ratios and implied risk free rates. Practical problems have many linear inequality constraints and the relevant portfolio optimization problem becomes a quadratic (or parametric quadratic) programming problem. In addition, commercial portfolio optimization requires transaction costs and we will discuss these briefly. This talk will reflect the author’s consulting experience.
欢迎系内外广大师生积极参加!
会计与财务管理系
2012.6.5